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Abstract

This paper presents an efficient approach for zero-shot anomaly classification (AC) and
segmentation (AS) in industrial applications. While existing zero-shot anomaly detection
methods often rely on supplemental prior knowledge or trade computational speed for
performance, our method eliminates dependence on external data and accelerates detection.
We propose a dynamic coreset strategy that learns directly from test data and repurposes
it for anomaly scoring. The coreset is initially constructed from diverse image patches to
comprehensively capture potential data patterns across all test samples. Through iterative
expansion and score-based filtration, the coreset progressively refines its representation
of normal data distributions. This adaptive process enables quantitative evaluation of
anomaly severity based on deviations from the learned norms. Experimental validation
across multiple benchmarks demonstrates the method’s effectiveness. On MVTec AD,
we achieve state-of-the-art average AUROC scores of 93.52% (AC) and 96.55% (AS),
while maintaining processing speeds of 5 to 7 frames per second. These results highlight
the ability of our framework to balance accuracy and efficiency in practical industrial
deployments.

1 Introduction
Industrial anomaly detection is crucial for quality control, where defective products

pose risks and false alarms increase costs [16, 29]. Since defect patterns are unpredictable,
unsupervised methods that require no defect-specific training have emerged as practical
solutions [25]. These approaches measure deviations from normal patterns in full-shot,
few-shot, or zero-shot configurations.

Research on full-shot and few-shot anomaly detection algorithms is relatively mature
[25], as a certain quantity of normal images serves as direct references, allowing for the
analysis of discrepancies between the test data and these references from multiple perspectives.
PatchCore [20] is efficient but requires labeled data. While full/few-shot methods (using
labeled normal references) are well-established, zero-shot detection avoids training data
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Figure 1: Comparison between our FSLC method and other unsupervised anomaly detection
methods. The MuSc[15] uses all test data for anomaly scoring, resulting in high computational
complexity and interference from outlier data. Our method introduces the concept of coreset
in PatchCore and learns a smaller feature set for scoring. The method achieves state-of-the-art
performance in defect localization, and even outperforms the vast majority of unsupervised
methods with full train samples like PatchCore[20].

dependency, preventing distribution-shift errors. Current zero-shot research focuses on
external data (e.g., pre-trained models), creating impractical dependencies. Though MuSc
[15] eliminates this need, its O(n2) complexity hinders industrial deployment.

To address the computational complexity issues inherent in the MuSc method, our pro-
posed approach integrates the coreset mechanism into the test data processing. In contrast to
PatchCore [20] approach of constructing a static coreset, our method introduces a dynamic
coreset optimization process as is illustrated in Fig 1. Specifically, we first extract an ini-
tial compact coreset∗ from the unlabeled data. This preliminary coreset then undergoes an
iterative refinement process through expansion and filtering operations based on the data
distribution. This adaptive approach enables the generation of a more representative coreset
that better approximates the true distribution of normal features. The optimized coreset
subsequently facilitates efficient re-scoring of all test instances.

Through comprehensive experiments on some datasets such as MVTec AD [1] and VisA
[32], our FSLC method demonstrates superior performance across various data scenarios.
Both the anomaly classification (AC) and segmentation (AS) capabilities of our algorithm (
AC AUROC: 93,52%, AS AUROC: 96.55%) outperform the vast majority of current few-shot
and zero-shot methods. Additionally, our detection speed (6.2 frames/s) far exceeds that
of the MuSc method(< 0.5 frames/s), which also belongs to the zero-shot category. The
contributions of this work are summarized below:

1. We propose an algorithm suitable for zero-shot unsupervised industrial anomaly
detection scenarios, which learns knowledge from test data and continuously improves
performance as the test data increases.

2. We propose a coreset learning method that relies solely on unlabeled data to realize the
expression of normal data.

3. Our algorithm achieves about 15 times speedup over MuSc [15] on datasets like MVTec
AD [1] while maintaining comparable AUROC performance.
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2 Related Work

In industrial applications, defect detection techniques for both full-shot and few-shot
scenarios have reached relative maturity [25], primarily due to the availability of normal
data that provides explicit guidance. Building upon full-shot methods, few-shot approaches
often maintain robust performance through data augmentation [11] or advanced data utiliza-
tion techniques [7]. The CutPaste method [13, 23] introduces artificial anomalies to train
classification networks, enabling them to learn the boundaries of normal image distributions
in feature space. Algorithms like flow-based methods such as FastFlow [28], DiffNet [21],
and PyramidFlow [12] employ additional networks to map normal data distributions into
Gaussian forms. Reconstruction-based approaches [10, 17, 22] train models with limited
data, resulting in constrained reconstruction capabilities that serve as a form of memory. In
contrast, methods like PaDiM [4] and PatchSVDD [27] model features at each location as
independent Gaussian distributions, proving effective in scenarios with fixed object positions.

The PatchCore method [20] introduces a novel paradigm for anomaly detection by employ-
ing coresets to efficiently store representative normal local feature patterns. During inference,
the method utilizes k-nearest neighbors (KNN) [6] to compare test image features against
the coreset representation, achieving significant reductions in both storage overhead and
computational complexity. This coreset-based memory framework has inspired subsequent
advancements in the field, particularly evident in few-shot approaches such as WinCLIP+ [9],
which integrates CLIP [19] and DINO [2] feature matching mechanisms with coreset-guided
anomaly scoring. The coreset concept has been further extended in methods like LTAD [8] and
PromptAD [14], while FastRecon [7] incorporates feature space projection and reconstruction
techniques. A critical limitation shared by these approaches is their reliance on static coresets,
potentially limiting their adaptability to diverse patterns only exist in test data.

In zero-shot anomaly detection scenarios, where access to training data is inherently
unavailable, algorithms are required to directly learn representations of normal data from
mixed test sets. Contemporary approaches such as WinCLIP [9] and APRIL-GAN [3] leverage
pre-defined text prompt, employing the dual encoder architecture of CLIP [5, 19] to establish
feature correspondences between image embeddings and textual descriptors. AnomalyCLIP
[31] extends this paradigm by integrating supervised learning from domain-specific datasets
to refine text prompt optimization. The recently introduced MuSc method [15] presents a
novel approach that operates without external datasets or prior knowledge; however, this
comes at the cost of significant computational overhead. The method employs a mutual
scoring mechanism to evaluate patch-wise similarity and occurrence frequency, establishing
high-frequency patterns as statistical indicators of normal regions.

3 Method

3.1 Feature Extraction

We utilize the Vision Transformer (ViT) Φ instead of ResNet [26] for feature extraction.
For each image Ii in the test image set Dtest = {Ii, i = 1, ...,N}, we extract intermediate tensors
from different layers of the ViT, and concatenate them to represent the multi-scale features of
the local regions within the image. Additionally, we apply pooling with a convolution kernel
of size r× r to these multi-scale features, enhancing the receptive field of the features.

Through this method, for each test image Ii, we obtain a map of corresponding patch-level
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multi-scale feature vectors Fi ∈ RH×W×C and an image-level feature vector Φ(Ii), where
H×W represents the size of the feature map output by the modeland C denotes the length of
the features. The entire sets of features {Fi, i = 1, ...,N} and Φ(Dtest) = {Φ(Ii), i = 1, ...,N}
obtained from the images in the entire test set will collectively be utilized in the subsequent
computation process for anomaly detection.

Figure 2: Overview of FSLC. Test samples are processed into a series of image-level and
patch-level features, and a coreset is formed by the selection of some local features through
two rounds of sparse sampling at the image and pixel levels. Expanding and filtering by all
patch features allow coreset to include only as many normal features as possible, and it can
be used as guidance to give anomaly scores.

Figure 3: For toothbrush category, the left panel presents the image set S. It is evident that
the algorithm has selected images of varying styles, enhancing the informational richness of
the coreset.The right panel displays the feature set M0 ⊂ Q. During feature down-sampling,
parts with more critical information are more densely sampled.

3.2 Coreset Initialization
After extracting all the features to be tested, we aim to utilize these data to construct an

initial coreset M0 that encapsulates the majority of the patch feature distribution patterns
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present.
The strategy adopted in our approach involves firstly selecting as diverse partial images

S = {Ik0 , Ik1 , ..., Ikr} ⊂ Dtest as possible under the guidance of image-level features Φ(Dtest),
and subsequently extracting as varied local feature points M0 from these images based on
patch-level features Q = { f | f ∈ Fi, i = k0,k1, ...,kr} ∈ R(r∗H∗W )×C. r represents the number
of images after downsampling at the image-level and Fi is the flattened feature map of the i-th
image in S. The process of selecting images or patches essentially constitutes down-sampling.
To incorporate guiding information, we opt for selecting feature points as sparsely as possible.
Through the k-center greedy [24] method, we can achieve sparse sampling, utilizing an initial
coreset M0 of limited size to delineate the overall data distribution trend within the entire
test set.

3.3 Coreset Generation
Due to the presence of many defective patch features mixed within and the absence of

certain special data paradigms in the above down-sampling process, the initial coreset M0 is
improper to be directly utilized as a reference for assigning anomaly scores to the test data
Φ(Dtest).

(a) Original (b) Expanded (c) Filtered (d) Without Adjusting (e) Adjusted

Figure 4: The visualization of the generation process involving the coreset. (a)Initially,
the coreset contains a small proportion of anomalous data points, marked in red. (b)The
expansion of the coreset enriches the variety of normal data paradigms. (c)The filtering
process effectively removes nearly all anomalous data points. (d)(e)In the process of rescoring,
adjusting the scores can more effectively separate normal and abnormal points.

Expansion. Among the numerous images Dtest − S that were not selected, there may
still exist a small portion of data paradigms that differ from those already present in the
coreset. We evaluate the similarity between data points based on the mutual l2 distances
in the feature space. For each image, we compute the pairwise distances between all its
patches and the existing features in the coreset, and select the patches that are far from the
data in the coreset within that image. For the feature Fi of the i-th image and existed coreset
Mi−1 , this process can be expressed as: Mi = Mi−1

⋃
argmax∆M⊂Fi dist(∆M,Mi−1) ,

dist(∆M,Mi−1) = min f∈∆M, f ∗∈Mi−1 ∥ f − f ∗ ∥2 .
And then we will upgrade coreset from M0, M1, M2,..., MN−1, MN . During each

iteration, a portion of the features from the i-th image, which were originally not part of the
initial coreset, are selectively introduced into the coreset. Following the augmentation process
utilizing all features of the test images, the current coreset M∗ = MN now encompasses
nearly all data paradigms that may appear in the test data.

Filtering. After obtaining the extended information, coreset M∗ can approximately
represent all the data paradigms that appear in the test dataset. However, in the process of
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selecting as dissimilar data as possible, we inevitably collect a significant amount of feature
data corresponding to defective patches. Therefore, we need to filter the current coreset M∗.

Our algorithm is grounded in a more general and realistic observation: Any normal image
patch style will appear across most images —even defective ones— whereas defect-specific
patterns are inherently rare. Only when a very limited number of defects happen to cover the
corresponding locations fortunately, will a particular normal region be absent. Therefore, we
can evaluate the degree of abnormality of patch feature f ∈M∗ based on whether similar
regions are commonly present in Φ(Dtest) = {Φ(I j)| j = 1,2,3, ...,N}:

a j
f =

H×W
min
n=1

∥ f − f n
j ∥2 ,a∗f =

N

∑
j=1

a j
f =

N

∑
j=1

H×W
min
n=1

∥ f − f n
j ∥2 , (1)

Consequently, evaluation scores for the degree of abnormality of data points in the coreset
can be obtained using all test images. However, the boundary between the two remains
relatively ambiguous. The scores of some normal data points and abnormal ones are close and
intermingled. Therefore, for each patch feature f in M∗, we select the lowest constant value
X% of these scores and compute the average based on this subset G f ⊂ Dtest ( K = N ×X% ):

G f = {Ik|ak
f < a j

f , Ik ∈ Dtest,∀I j ∈ Dtest −G f , |G f |= K}, (2)

a f = ∑
I j∈G f

a j
f = ∑

I j∈G f

H×W
min
n=1

∥ f − f n
j ∥2 . (3)

As illustrated in Fig 4e, this methodology can reduce the overlap between normal and
abnormal features, thereby facilitating a more effective filtration of defective data points in
the coreset.

Finally, based on the scoring of the data points in the coreset, we filtered out the portion
with higher abnormal scores and obtained the final coreset:

M= { f |a f < a f ∗ , f ∈M∗,∀ f ∗ ∈M∗−M, |M|= Nwanted} . (4)

In this module, Nwanted denotes the intended size of the coreset that is to be retained. This
size can be either manually predetermined, or automatically determined through methodolo-
gies such as OTSU [18] method.

3.4 Data Scoring
Through the expansion and filtering of the initial coreset, we obtained a memory bank M

that primarily contains only normal features and encompasses the characteristics of nearly all
normal regions that may appear in the test data, which can serve as a reference. Ultimately,
the anomaly degree of each patch feature f will be scored based on this reference:s( f ) =
min f ′∈M ∥ f − f ′ ∥2 .

After obtaining the anomaly degree score for each patch, the anomaly segmentation(AS)
task in defect detection has been achieved. In the other task of anomaly classification(AC),
the abnormal score S for each image Ii is calculated using the following formula:S(Ii) =

s( f ∗) ·w(Ii) ,where f ∗ = argmax f∈Ii s( f ) , and w(Ii) = 1− exp(s( f ∗))
∑ f∈Nb( f∗) exp(s( f )) , with Nb( f ∗)

the b nearest neighbor points in M for point f ∗. Instead of relying on the single patch with the
highest anomaly score, as is commonly done in many algorithms to represent the image-level
score, we conduct a analysis of the anomaly scores of several patches with the highest scores
within an image.
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4 Experiments

4.1 Experiment Settings

Datasets. To rigorously assess our algorithm’s performance in diverse industrial anomaly
detection scenarios, we conducted extensive experiments on two benchmark datasets: MVTec
AD [1] and VisA [32], which are widely utilized in industrial anomaly detection research.

The MVTec AD dataset consists of high-resolution RGB images across 15 distinct
categories, including 10 object categories and 5 texture categories. Each category contains
approximately 150 training images exclusively composed of defect-free samples, along with
a test set that includes both normal images and various types of defective samples. The VisA
dataset, while similar in structure, encompasses 12 different categories. Notably, both datasets
provide pixel-level annotations for defect localization in all test images for evaluation.

Evaluation Metrics. For comprehensive quantitative evaluation of our anomaly detection
algorithm’s performance, we employ the Area Under the Receiver Operating Characteris-
tic Curve (AUROC) as our primary metric to measure the result of image-level anomaly
classification(AC) and pixel-level anomaly segmentation(AS). Compared to classical met-
rics that require preset threshold, this can adaptively transform the performance within
different intervals from different methods to comparable results of the same magnitude.

MVTec AD VisA
pixel image pixel image

full-shot

PaDiM [4] 97.10 97.90 N/A N/A
CutPaste [13] 96.00 95.20 N/A N/A
PatchCore(ResNet)[20] 98.10 99.10 N/A N/A
PyramidFlow [12] 95.50 N/A N/A N/A
RealNet [30] 99.00 99.60 N/A N/A

few-shot

PaDiM(k=4) [4] 92.60 80.40 93.20 72.80
PatchCore(k=4) [20] 94.99 89.49 96.80 85.30
PatchCore(ViT,k=4) 95.73 92.11 91.36 72.80
FastRecon(k=4) [7] 96.98 94.24 N/A N/A
WinCLIP+(k=4) [9] 96.23 94.65 97.20 87.30
PromptAD(k=4) [14] 96.50 96.60 97.40 89.10

zero-shot

WinCLIP [9] 85.12 92.73 79.60 78.10
AnomalyCLIP [31] 91.10 91.50 95.50 82.10
MuSc(ViT) [15] 97.25 97.83 98.70 92.80
MuSc(ResNet) 85.51 78.69 82.33 70.75
FSLC(all) 96.55 93.52 95.55 79.76
FSLC(part) 95.81 92.33 96.10 75.45

Table 1: Comparison of the anomaly detection
performances on both MVTec AD and VisA
dataset. We report the average performance of
the relevant algorithms tested multiple times
on these datasets. Bold indicates the best per-
formance, and horizontal line represents the
second best performance.

WinCLIP AnomalyCLIP
MuSc [15] FSLC

[9] [31]

Candle 88.9 / 95.4 98.8 / 79.3 99.4 / 96.2 98.0 / 87.2
Capsules 81.6 / 85.0 95.0 / 81.5 98.8 / 88.8 94.5 / 75.9
Cashew 84.7 / 92.1 93.8 / 76.3 99.3 / 98.6 95.5 / 75.2
Chewinggum 93.3 / 96.5 99.3 / 97.4 99.5 / 98.3 98.9 / 97.4
Fryum 88.5 / 80.3 94.6 / 93.0 97.8 / 99.0 96.0 / 84.1
Macaroni1 70.9 / 76.2 98.3 / 87.2 99.5 / 89.7 94.4 / 75.1
Macaroni2 59.3 / 63.7 97.6 / 73.4 97.2 / 69.9 84.1 / 48.3
PCB1 61.2 / 73.6 94.1 / 85.4 99.5 / 89.8 98.8 / 55.9
PCB2 71.6 / 51.2 92.4 / 62.2 97.6 / 93.4 93.8 / 71.6
PCB3 85.3 / 73.4 88.4 / 62.7 98.2 / 93.8 96.4 / 81.0
PCB4 94.4 / 79.6 95.7 / 93.9 98.7 / 98.4 96.7 / 88.0
Pipe fryum 75.4 / 69.7 98.2 / 92.4 99.4 / 98.4 99.4 / 96.1

Table 2: FSLC anomaly segmentation and
classification performance comparisons in
AUROC(%) on VisA dataset in a pixel-
level / image-level form. We compared
FSLC with other zero-shot anomaly detec-
tion methods.

Baselines. We compare our method with some state-of-the-art approaches on zero-shot
or few-shot anomaly detection, e.g. WinCLIP [9], AnomalyCLIP [31] and MuSc [15] in Tab
1. In addition, some full-shot methods like PaDiM [4], PatchCore [20], FastRecon [7] and
PyramidFlow [12] are also compared.

4.2 Anomaly Detection on MVTec AD and VisA

AUROC performance. Owing to the relatively recent introduction of the VisA dataset,
comprehensive evaluations of many full-shot methods remain unavailable. As demonstrated
in Tab 3 and Tab 2, we present a comprehensive comparison of anomaly segmentation (AS)
and classification (AC) performance between our FSLC method and existing approaches. The
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Figure 5: Qualitative results of anomaly localization for both MVTec AD and VisA datasets.
The first row presents normal samples in these categories, while the red box in the second row
indicates the approximate location of the defect area. The results indicate that our method can
effectively locate defect areas by analyzing the distribution trend of test data.

experimental results reveal that our algorithm achieves competitive performance with the
state-of-the-art MuSc method across most categories, attaining comparable AUROC perfor-
mance at both image and pixel levels. Notably, our approach exhibits marginal performance
improvements ranging from 0.12% to 0.56% in specific categories. Furthermore, as evidenced
in Tab 1, our method substantially outperforms most existing zero-shot and few-shot anomaly
detection algorithms, demonstrating its effectiveness across different learning paradigms.

category PatchCore WinCLIP WinCLIP+ FastRecon AnomalyCLIP MuSc [15] FSLC(k=4) [20] [9] (k=4) [9] (k=4) [7] [31]

Bottle 98.60 / 99.60 89.50 / 99.20 97.80 / 99.30 98.50 / 99.44 90.40 / 89.30 98.60 / 99.90 99.13 / 100.00
Cable 97.90 / 97.40 77.00 / 90.90 94.90 / 88.40 96.12 / 93.79 78.90 / 69.80 96.30 / 99.00 93.88 / 99.74
Capsule 97.70 / 66.30 86.90 / 82.30 96.20 / 77.30 98.96 / 90.07 95.80 / 87.20 98.90 / 96.70 98.98 / 65.14
Carpet 99.00 / 99.00 95.40 / 100.00 99.30 / 100.00 99.15 / 99.90 98.80 / 100.00 99.50 / 99.90 99.20 / 99.96
Grid 70.60 / 63.00 82.20 / 98.80 98.00 / 99.60 86.32 / 88.81 97.30 / 97.00 98.40 / 98.70 98.28 / 99.62
Hazelnut 97.00 / 92.80 94.30 / 93.90 98.80 / 98.40 98.59 / 99.32 97.10 / 97.20 99.40 / 99.60 98.46 / 99.96
Leather 96.90 / 100.00 96.70 / 100.00 99.30 / 100.00 99.20 / 100.00 98.60 / 99.80 99.70 / 100.00 99.82 / 100.00
Metal_Nut 97.00 / 94.70 61.00 / 97.10 92.90 / 99.50 98.72 / 99.12 74.40 / 93.60 86.00 / 96.30 81.05 / 99.95
Pill 96.90 / 89.00 80.00 / 79.10 97.10 / 92.80 98.32 / 93.48 92.00 / 81.80 97.60 / 96.40 98.16 / 94.76
Screw 92.10 / 54.10 89.60 / 83.30 96.00 / 87.90 97.10 / 62.46 97.50 / 81.10 98.90 / 83.50 96.54 / 57.90
Tile 96.00 / 100.00 77.60 / 100.00 96.60 / 99.90 96.73 / 100.00 94.60 / 100.00 98.10 / 100.00 98.07 / 100.00
Toothbrush 98.80 / 95.20 86.90 / 87.50 98.40 / 96.70 99.04 / 93.61 91.90 / 84.70 99.50 / 100.00 99.65 / 96.94
Transistor 95.00 / 98.40 74.70 / 88.00 88.50 / 85.70 94.18 / 97.29 71.00 / 92.80 92.00 / 99.10 94.89 / 95.58
Wood 93.10 / 97.40 93.40 / 99.40 95.40 / 99.80 94.94 / 99.29 96.50 / 96.80 97.40 / 98.50 98.02 / 98.87
Zipper 98.30 / 95.50 91.60 / 91.50 94.20 / 94.50 98.89 / 96.95 91.40 / 98.50 98.40 / 99.90 94.27 / 94.49

Table 3: FSLC anomaly segmentation and classification performance comparisons in
AUROC(%) on MVTec AD dataset in a pixel-level / image-level form. Bold indicates
the best performance, and horizontal line represents the second best performance. Our method
achieves almost as excellent performance as the PatchCore and MuSc methods.

Time Expense. While achieving comparable AUROC performance, our algorithm
demonstrates significantly reduced computational complexity compared to the MuSc. In
our experimental evaluation conducted on NVIDIA RTX 4060 GPU using the PyTorch, the
complete feature processing pipeline—encompassing both coreset generation and anomaly
scoring—achieves an average processing time of 30 ms per image. This computational
efficiency substantially outperforms most existing methods in terms of runtime performance.
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MuSc [15] feature scoringextraction

time / ms 190.29 1531.08

FSLC feature coreset coreset scoringextraction expanding filtering

time / ms 170.41 7.46 6.45 2.44

Table 4: Time expense of each image
in MuSc and our FSLC method. Tests
were conducted on the leather category
with 83 samples in the MVTec AD
dataset, because the average time ex-
pense is related to the numbers of test
images for MuSc method.

MVTec VisA
image pixel image pixel

FSLC(ours) 93.52→ 96.55→ 78.95→ 95.91→
random image sampling 93.13 ↓ 92.33 ↓ 79.92 ↑ 94.12 ↓
random patch sampling 91.16 ↓ 83.21 ↓ 75.30 ↓ 82.23 ↓
w/o coreset expanding 93.88 ↑ 96.11 ↓ 72.70 ↓ 89.89 ↓
w/o score adjusting 90.42 ↓ 93.42 ↓ 65.60 ↓ 93.91 ↓

Table 5: Effects of steps in FSLC. The ran-
dom image/patch sampling refers to using
random sampling to replace k-center greedy
as is illustrated in sec 3.2. Also w/o coreset
expanding and w/o score adjusting refer to
removing the modules in sec 3.3 and 3.3. The
↓ represents the decrease in AUROC and ↑
represents the increase.

4.3 Ablation Study
Discussion of the parameters. The selection of some hyper-parameters in the algorithm

has a crucial impact on the experimental results. For example, as is illustrated in Fig 6c, the
increasing of number of points retained in the final coreset help to enhance the abundance of
coreset, but also raise the possibility of mixing incorrect points.

(a) Initial Image Nums for Coreset
Creating

(b) Nums of Patches in Expanding (c) Nums of Features in Final Coreset

Figure 6: Effects of three hyper-parameters comparisons in anomaly classification and
segmentation AUROC(%) on some categories in MVTec AD dataset.

Discussion of the sparse down-sampling and coreset expansion. As evidenced by
the experimental results in Tab 5, the performance of sparse down-sampling for both S and
M0 consistently outperforms random down-sampling. Our findings demonstrate that the
combination of sparse down-sampling and coreset expansion effectively maximizes data-
representativeness within constrained coreset size, leading to superior detection capabilities.

Discussion of the adjustment of scoring. This approach is specifically designed to
optimize the coreset composition by maximizing the retention of normal samples while effec-
tively excluding anomalous data. The experimental results, as shown in Table 5, reveal that
employing the unmodified sum of mutual scores significantly degrades AUROC performance.

5 Conclusion
In this work, we present FSLC, a novel zero-shot industrial anomaly detection algorithm

that efficiently learns characteristic patterns of normal regions from unlabeled test data. Our
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approach operates through three key stages: initial feature extraction and coreset construction,
iterative coreset augmentation and filtering using test data for comprehensive representation
of normal patterns, and rapid anomaly scoring. The proposed method achieves detection
performance comparable to SOTA zero-shot approaches while rivaling the performance of
leading full-shot and few-shot methods. Notably, our method demonstrates superior efficiency
and broader applicability compared to other zero-shot solutions, offering new choice for
practical deployment.
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